In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity.
The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler equation. This simplified equation is applicable to inviscid flow as well as flow with low viscosity and a Reynolds number much greater than one. Using the Euler equation, many fluid dynamics problems involving low viscosity are easily solved, however, the assumed negligible viscosity is no longer valid in the region of fluid near a solid boundary (the boundary layer) or, more generally in regions with large velocity gradients which are evidently accompanied by viscous forces.Clancy, L.J., Aerodynamics, p.xviiiKundu, P.K., Cohen, I.M., & Hu, H.H., Fluid Mechanics, Chapter 10, sub-chapter 1
The flow of a superfluid is inviscid.
Inviscid flows are broadly classified into (or, irrotational flows) and rotational inviscid flows.
Real fluids experience separation of the boundary layer and resulting turbulent wakes but these phenomena cannot be modelled using inviscid flow. Separation of the boundary layer usually occurs where the pressure gradient reverses from favorable to adverse so it is inaccurate to use inviscid flow to estimate the flow of a real fluid in regions of unfavorable pressure gradient.
The value represents the ratio of inertial forces to viscous forces in a fluid, and is useful in determining the relative importance of viscosity. In inviscid flow, since the viscous forces are zero, the Reynolds number approaches infinity. When viscous forces are negligible, the Reynolds number is much greater than one. In such cases (Re>>1), assuming inviscid flow can be useful in simplifying many fluid dynamics problems.
Assuming inviscid flow allows the Euler equation to be applied to flows in which viscous forces are insignificant. Some examples include flow around an airplane wing, upstream flow around bridge supports in a river, and ocean currents.
When the fluid is inviscid, or the viscosity can be assumed to be negligible, the Navier-Stokes equation simplifies to the Euler equation: This simplification is much easier to solve, and can apply to many types of flow in which viscosity is negligible. Some examples include flow around an airplane wing, upstream flow around bridge supports in a river, and ocean currents.
The Navier-Stokes equation reduces to the Euler equation when . Another condition that leads to the elimination of viscous force is , and this results in an "inviscid flow arrangement". Such flows are found to be vortex-like.
To date, helium is the only fluid to exhibit superfluidity that has been discovered. Helium-4 becomes a superfluid once it is cooled to below 2.2K, a point known as the lambda point. At temperatures above the lambda point, helium exists as a liquid exhibiting normal fluid dynamic behavior. Once it is cooled to below 2.2K it begins to exhibit quantum behavior. For example, at the lambda point there is a sharp increase in heat capacity, as it is continued to be cooled, the heat capacity begins to decrease with temperature. In addition, the thermal conductivity is very large, contributing to the excellent coolant properties of superfluid helium. Similarly, Helium-3 is found become a superfluid at 2.491mK.
Another application of the superfluid helium is its uses in understanding quantum mechanics. Using lasers to look at small droplets allows scientists to view behaviors that may not normally be viewable. This is due to all the helium in each droplet being at the same quantum state. This application does not have any practical uses by itself, but it helps us better understand quantum mechanics which has its own applications.
Reynolds number
characteristic length m fluid velocity m/s fluid density kg/m3 fluid viscosity Pa*s
Euler equations
material derivative Del pressure Pa acceleration vector due to gravity m/s2
Navier-Stokes equations
Solid boundaries
Although these distinctions can be a useful tool in illustrating the significance of viscous forces near solid interfaces, it is important to note that these regions are fairly arbitrary. Assuming inviscid flow can be a useful tool in solving many fluid dynamics problems, however, this assumption requires careful consideration of the fluid sub layers when solid boundaries are involved.
Superfluids
Applications
See also
|
|